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The so-called perfect wetting phenomenon is studied for the q-state, d >/2 Potts 
model. Using a new correlation inequality, a general inequality is established for 
the surface tension between ordered phases (a a'b) and the surface tension 
between an ordered and the disordered phases (a a'f) for any even value of q. 
This result implies in particular o~;b~> a~,,f+ abe' f> 0 at the transition point fl, 
where the previous phases coexist for q large. This inequality is connected to 
perfect wetting at the transition point using thermodynamic considerations. The 
same kinds of results are derived for the Blume~Tapel model. 
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1. I N T R O D U C T I O N  

The coexistence of phases is a classical subject in physics, and its 
microscopic description is currently under progress within statistical 
mechanics. Belonging to the class of models which may describe the 
coexistence of three phases, we find the well-known Potts and 
Blume-Capel models. 

The simple structure of the Potts model permits a rather precise 
analysis of its phase diagram: thus, Baxter ~1~ founded the exact solution at 
the transition temperature for two dimensions and for q > 4  and the 
existence of a latent heat at this point (i.e., a discontinuity of the energy). 
For q ~< 4, he got a transition of second order. In dimension 3, it is expected 
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that  the transit ion will be of first order even for q = 4. The existence of this 
first-order transit ion has been proved rigorously by Kotecky  and 
Shlosman (z) for q large enough and for any dimension d>~ 2. For  such q, 
there exists a unique transit ion temperature Tt=/~71 where q ordered 
phases (a, b,...) coexist with a disordered one ( f ) .  Above/~, ,  only ordered 
phases can coexist and below /~, there is a unique phase: the disordered 
one. Two kinds of  interfaces may  therefore appear  within this context: 
between ordered phases or between ordered and the disordered phases. 

In this paper, we shall be interested in the coexistence of three phases. 
We are thus led to consider a p r i o r i  two possible situations: the coexistence 
of  three ordered phases and the coexistence of two ordered and the dis- 
ordered phases. T h e  Blume Capel model  can be studied along the same 
lines, since it can be shown by applying the Pi rogov-Sina i  theory at low 
temperature that  there is a transit ion temperature where three phases can 

coexist. 
To describe the coexistence of  three phases, one needs to consider the 

relationship between the surface tensions that  characterize the 
corresponding interfaces. It is known  that  two distinct physical situations 
may  occur:  a lens or a film of the intermediate phase. Since Gibbs already 
said what  we wish to point  out, we reproduce his own words (ref. 3, quoted 
before in ref. 4, f rom which we also take the comments  inside the brackets):  

Let A, B, C, the three different fluid phases of matter, which satisfy the con- 
ditions necessary for equilibrium when they meet at plane surfaces. The com- 
ponents of A and B may be the same or different, but C have no components 
except such as belong to A or B. Let us suppose masses of the phase A and B to 
be separated by a very thin sheet of the phase C.... The value of the superficial 
tension for such a film will be aAC + aBC, if we denote by these symbols the ten- 
sions of the surfaces of contact of the phases A and C, and B and C, respec- 
tively .... Now if aAC + a,~C is greater than aAB, the tension of the ordinary sur- 
face between A and B, such a film will be at least practically unstable, lit will 
retract into a lens.] .... We cannot suppose that aAB > a a c  + a B c ,  for this would 
make the ordinary surface between A and B unstable and difficult to realize. If 
aAB = trAC + trBc, we may assume, in general, that this relation is not accidental, 
and that the ordinary surface for the contact for A and B is of the kind that we 
have described [that is, with A and B separated by a sheet of C]. 

This last si tuation (the film) will be defined as perfect wetting, while the 
previous regime (lens) will be called partial wetting. 

Numerous  papers have been devoted to the study of wetting (see 
refs. 5-7 and references therein). Within the class of  models we consider, we 
point  out  several approaches  which suggest the occurrence of  perfect 
wetting at the transit ion point. By numerical  investigations Selke (8) has 
shown that  the net adsorpt ion  per unit length of disordered phase at the 
interface diverges a t  this part icular point. The same result has been 



Perfect Wetting 47 

obtained by Derrida and Schick (9) in the mean field approximation. 
Another result which goes in the same direction has been obtained by 
Bricmont and Lebowitz, (1~ who, using perturbative arguments for d~> 3, 
study an inequality of the type considered by Gibbs for restricted surface 
tensions (i.e., those that take into account only the lowest energy 
e, xcitations of the interface). 

The aim of this paper is to study perfect wetting for the q-states Potts 
model and the generalized Blume-Capel model along the lines described by 
Gibbs. We establish the validity for any dimension d~> 2 and any even 
value of q of the inequality 

r ab ~ ~Taf "J~ - a b f  (1.1) 

which takes its full physical meaning at the transition point where crab and 
cr as are strictly positive. (u'12) The key of the proof is a new correlation 
inequality for the Potts model. In fact this correlation inequality is derived 
for a wider class of Hamiltonians and has its own interest (see 
Theorems 1-3). The same kind of inequality will also be derived for the 
Blume-Capel model by using FKG inequalities. (13) On the other hand, 
since the surface tensions between two ordered phases are equal, we have 

a ab "~ G ac -{- O "bc (1.2) 

from which we easily understand that an ordered phase cannot wet two 
other ordered ones. 

Another way of describing perfect wetting is by considering the film as 
an infinitely flat lens with zero contact angles 01 and 02 (see Fig. 1). For 
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Contact angles 01 and 02 for a lens of phase C. 
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fluid systems the contact angles of the lens of the phase C are given by the 
Dupr6 equations: 

aA8 = aAC COS 01 + a s c  COS 02 (1.3a) 

0 = aAC sin 01 -- a~c sin 02 (1.3b) 

and thus perfect wetting obeys the so-called Antonov rule: 

f f  A C  -[- f f  B C  = ~T A B  (1.4) 

However, for anisotropic media, the preceding relations must be 
corrected. A standard free energy minimization at constant volume leads in 
this case to the so-called Herring relations. (14) These relations are the 
generalizations of the Dupr6 equations and can be written explicitly as 

aAB(0) = COS 01aAC(01) + COS 02aBe(02) 

-- sin 01a'AC(01) -- sin 02ff~c(02) (1.5a) 

a~B(0) = Isin 01 ( T A C ( O 1 )  - -  sin OzaBc(Oz) 

+ cos Ola'Ac(01) - cos Oza'Bc(02)[ (1.5b) 

where axr.(O) is the surface tension for an interface between X and Y, 
which makes an angle 0 with respect to the horizontal axis, and a'xy(O) is 
the derivative of axy(O) with respect to the angle 0. Perfect wetting still 
corresponds to 01 = 02 = 0 in formula (1.5). Whether or not the last relation 
in this case is compatible with Antonov rule will also be considered in this 
paper. 

The paper is organized as follows. The new correlation inequalities are 
derived in Section 2. Section 3 is devoted to surface tension inequalities 
within the Potts model. The Blume-Capel  model is considered in Section 4 
and some concluding remarks are given in Section 5. 

2. C O R R E L A T I O N  I N E Q U A L I T I E S  

We consider the q-state Potts model defined as follows: at each lattice 
site i of a d-dimensional cubic lattice 77 a there is a variable x~ = 1, 2 ..... q; the 
Hamiltonian in a finite box A c 77 a is 

H A =  -- ~ Job(xi, x j ) -  ~ [He,~(xi, a)+K~6(xi ,  b)] (2.1) 
( i ; j ) c A  i ~ A  

The first sum is over nearest neighbor pairs in A, 6 is the Kronecker  delta 
[6(x, x ' )  = 1 if x = x '  and 0 otherwise], and J~j are the coupling constants. 
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The second sum is over the sites of A; a and b are integers in { 1, 2 ..... q}; 
and H~, Kr are external fields in the directions of the states a and b, respec- 
tively. 

We let ( f ) ~  or (f(x~, xj .... ) )~ denote the expectation value of a 
function f defined on the configurations {xi}, i~A, with respect to the 
Gibbs measure in A, 

dVA = [ Z ( A ) ] - 1  e-~H~ 

We denote by ( f ;  g)TA = ( fg)~A-  (f).~A (g)~A the truncated expectation 
value. 

T h e o r e m  1. We assume that q is an even number and the poten- 
tials are ferromagnetic: Jo>~O, H~O,  Ki>~O. Then the following 
inequalities hold: 

i i ~B  YA 

i i ~B  7A 

for any subsets A and B of A, and a :~ b. 

The proof of this theorem will be based on the following discussion 
and we postpone it until the end of the section. 

We introduce a new system on the box A, which will include as a par- 
ticular case the above Potts model. This new system is defined as follows: 
to each lattice site i~A we associate the variables {ai, 0i}, where a~= _+1, 
0r ~ [0, 2zt]. We may consider two cases; either the variable 0~ is uniformly 
distributed in the circle [0, 2zr] for all i~A, or it takes, with the same 
probability, the discrete values 0i = 2~kr/n, where k i = 0, 1 ..... n -  1 for all 
i~ A. 

To simplify the notations, we represent by ~ dO~ the integral ~2~ dO~ in 
n 1 the first case and the sum Zgi=0 in the second case. 

Three families of polynomials H + (0i), H 7 (0r), and P~j(Oi, Oj) in the 
variables e ~~ e ~~ are attached respectively to each site i E A and to each pair 
of nearest neighbors (i, j )  ~ A. We assume that these polynomials are of 
the form 

Hi+-(Oi) = ~ a +(0 cos nO i 
n>~O 

P i j (O i ,  Oj) = Z anm(iJ) c o s ( n O i  + mOj) 
n E Z ; m E Z  
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and that all coefficients a ff u), "nine(O) are nonnegative. Moreover, Po(O~, 0;) = 0 
if ]i-j] ~ 1. We let PA denote the probability measure on the set of 
configurations (a, 0 )=  ({ai, 0~}, i~A)in A defined by 

pA(a,O)=ZAlexp[ ~ l+cria/ Oj) <, +>=A 2 Pi/(Oi' 

l + a / H + ( O ) +  ~ ~ HT(O)] 
i E A  i ~ A  

where ZA is the normalization factor such that 

Y~ f [I dO, pA(~, o)= 1 
ai= +_I; iEA i c A  

T h e o r e m  2. Let # be the following probability measure on the set 
of all subsets X of A: 

~ ( x )  = f [I dO, p~(~, O) 
i c A  

with a,-= +1 if i~X and a i=  - 1  if iCX. Let f and g be two increasing 
functions defined on the subsets of A [-i.e., such that f(X) >~f(Y) if X =  Y]; 
then the inequality 

( f ;  g>,,A>~O (2.3) 

holds for the truncated expectation value corresponding to the measure #A. 

ProoL Theorem 2 would follow from FKG inequalities provided that 
the inequality 

ItA(Xw Y) #A(Xn Y) >~ #A(X) #A(Y) 

is satisfied for all X, Y contained in A. For each X ~  A we introduce the 
partition function 

ZP'H(X) = f 1-I dOiexp I ~ P~ 0/)+ ~ Hi(O) ] 
i ~ X  <t j > c X  i ~ X  

When i~X andj~A\X it is 1 +aiaj=O, the box A decomposes into the 
two subsets X and A\X without interaction between them, and we get 

~(x) = z ~ , " + ( x )  z '~,~ (x) 
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Now we have to prove that 

Z " ' ( X u  ~') Ze"-'(X n Y)>>, Ze'"(X) Z""-'(~') 

which follows here from Ginibre inequalities (~6) by the same method as the 
one used in ref. 15. From this the FKG property for # follows and 
Theorem 2 is proved. I 

T h e o r e m  3. Let A, B be subsets of A and let F,~, Fn be 
]polynomials in the variables exp(i0j), j e A, and exp(i0s), j e B, respectively 
which may be expressed as sums of cosines with positive coefficients. Then 
the inequalities 

l+a~F . l+a~  ) ~[]a ~ A, I~ - - ~  F~ ~> 0 (2.4a) 
i~ B PA 

i~A 2 isB-'--~ FB 40 (2.4b) 
PA 

hold for the truncated expectation value with respect to the probability 
measure pa(a, X) I]i~A dOi. 

Proof. We assume that A c~ B = ~Zf, the general case being a trivial 
extension. We denote, for any J f c  A, by p~.H(. ) the expectation value with 
respect to the probability measure 

I z z  ,,to lr  do, 
( t  J ) ~ X  i ~ X  i c A  

on the configurations {0i}, ie  J(, and introduce the functions 

1+~/  iu+ F UA(X) = I~ - - - ~  P~ (a )  
i ~ A  

gB(X) = ~I ~@~ P~x(FB) 

We observe that f a ( X ) = 0  unless X=A, that gB(X)=0 unless A\X=B, 
and, by computing first the integration with respect to the variables 0;, 
i e A, that 

( ] ]  l+a~Fx I ~ llA(X) fa(X) 
i ~ A  ~ PA ~ X c A  

Moreover, 

( OA l +ai 1--ai \ 
i - - ~ F a ;  i~l-] - - - ~ F B ) o  A = (fA; gB)va 
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But from Ginibre inequalities it follows that 

p~l H+ (r A) >1 p~(Fs)  

when X1 D X2 = A. Hence, fA(X) is an increasing function on the subsets of 
A. Again Ginibre inequalities prove that gB(X) is a decreasing function. 
Then Theorem2 implies that (fA; g~),A<~ O, which proves the second 
inequality in Theorem 3. The first inequality can be proved by the same 
method. | 

Proof of Theorem I. The inequality stated in the theorem for the 
Potts model is a particular case of those of Theorem 3. In order to see this, 
we establish the following correspondence between the configurations x~ 
{1,...,q} with q=2n and the configurations (ai, 0~) with o-i--_+l, 
Oi=2~kJn, and k~=0, 1 , . . . , n -1 :  for 1 <~xi<~n we take a + l  and 0 i= 
2~(x~-l)/n, and for n+l<~xe<~2n we take a ~ = - i  and 0i = 
2rc(x i -  n - 1 )In. We choose a = 1, b = n + 1. Then 

~(Xi, Xj) -- 1 "~- (Ti~ j (~o(Oi_ Oj) 
2 

1+o-i  
6(x, a)=--2-- 60(0,) 

1 - - 0 "  i 
6(Xi, b) = T (~~ O i) 

where 30(0) = 1 and 3o(0) = 0 if 0 ~ 0. Since 60(0) may be written as 

1 1 " - I  
b o ( 0 ) = - + -  ~ cos m0 

rrl=l 

the hypotheses of Theorem 3 are satisfied. | 

3. W E T T I N G  IN THE POTTS M O D E L  

In order to define the surface tensions mentioned previously, let us 
consider the Ports model with zero external field and different boundary 
conditions. The Hamiltonian in a finite box A for a configuration 
XA = {Xi}, iEA, with boundary condition ~ (i.e., a configuration on Z a) is 

H~.~.(x~ I~)  = - ~ 6(x,, xj) (3.1)  
~ i ; j ) c ~ A ~  

where x i = ~  if i$A, and we denote by (.)~-~ the expectation 
corresponding to the Gibbs measure in A, [Z~.~ exp(--/~Habc). 
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In the following, we focus on the following types of boundary 
conditions: 

(a) The ordered b.c. obtained by fixing ffi = a, a = 1, 2 ..... q, for every i 
in ~a. 

( f )  The free b.c. (f) ,  where the sum in (3.1) runs only over the pairs 
{i; j )  included in A. 

(a, b, n) With respect to an arbitrary plane defined by a d vector n, the 
mixed (a, b, n) b.c. is defined by 

ffi-- a if i I n~ + . . .  + i dn  d ~ 0 

~ i = b  if i l n l  + "'" + i d n d < O  

(a, f ,  n) With respect to an arbitrary plane characterized by a d vector 
n, the mixed (a, f ,  n) b.c. is defined by putting ffi = a above the plane and 
taking the free b.c. below it. 

We are now able to define the surface tensions in our problem. 
However, since the model is anisotropic, we also have to take into account 
the angular dependence of these surface tensions. We consider a rec- 
tangular box A centered at the origin. Let SA(n) be the area of the portion 
of the plane defined by n inside A. We define the surface tension at the 
inverse temperature fl by 

1 z~b,"(/~) 
a~.b(n) = lira - - -  log (3.2) 

ATZd SA(n) [Z~(f l )  Z~(f l ) ]  1/~ 

To simplify our notations, we also introduce 

a~.b = a~.b(n) for n = ( 1 , 0  ..... 0) 

a~'b(O) = a~'b(n) for n = (cos 0, sin 0, 0,..., 0) 

R e m a r k  2. Definition (3.2) is justified by noticing that in this 
expression the volume terms proportional to the free energy of the 
coexisting phases as well as the terms corresponding to the boundary 
effects cancel and only the term that takes into account the free energy of 
the interface is left; see, for example, refs. 17-19. The limit (3.2) has been 
proved to exist in ref. 22 when a and b correspond to two ordered phases 
and n-- (1, 0 ..... 0); the same result is not yet known when a is an ordered 
phase and b = f .  

Rernork  2. To be complete, one should also point out that formula 
(3.2) for the (a, f )  b.c. gives indeed an interface free energy between two 
coexisting pure phases. Although for the Ising model, the combination of 
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+ or - b.c. with free b.c. will generate inside all the volume the + or - 
phase and hence a}.Y= 0 for any/~, this is not the case for the Potts model 
at/3 t and large q. In fact, the state that gives equal probability to all con- 
figurations (free b.c.) is a "ground state" obtained in the limit when q ~ oo 
and t ~=[ t ,~ (1 /d ) l ogq .  The other q ground states at this point are the 
Dirac measures on the completely ordered configurations x i =  a for all 
i e Z  a and a e  {1,..., q}. The fact that with free b.c. one obtains the dis- 
ordered pure phase may be proved as follows. We first notice that the even 
correlation functions with free b.c. are extremal among the translation- 
invariant states. This may be derived using the inequality (4.22) of ref. 20. 
Since there are only q + 1 states, (2~) we can deduce the unicity of the dis- 
ordered state, which is therefore extremal. 

Due to the symmetry of the model, ~r}'b(n) has the same value for 
every choice of a and b. Analogously, all the a}'I(n) are equal, indepen- 
dently of a. For such tensions, we have the following theorem. 

T h e o r e m  4. 
have 

For the q-state Potts model with q even and d/> 2, we 

a~.b(n) >~ a~'f(n) + o-~,f(n) (3.3) 

for any temperature /?-1 for any orientation n, and for any two different 
ordered phases a and b. 

ProoL By definition of the surface tensions a sufficient condition to 
ensure the validity of (3.3) is 

z~,b,"(fl) zU'"(fl) z~,J,"(fl) 
[z~,(fl) z~(fl)] ' / '  ~ [z~,(fl) z~(fl)] 1/2 [z~(fl) z~(fl)]'/2 

This inequality can also be written as 

zTqb'"(fl) zaJ'"(fl) ZU'"(fl) 
- - 4  - -  - -  

z~(fl) z~(fl) z~(fl) 

Due to the symmetry of the partition functions with respect to the plane 
defining the interface, this last inequality is in fact a straightforward 
consequence of Theorem 2, namely 

i ~ A  + i E ~ A -  
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where #A + (resp. OA-) is the part of the boundary located above 
(resp. below) the plane. 

In fact this inequality implies the previous one if the definition of sur- 
face tension is slightly modified in the following sense. In the region where 
the boundary condition is called free one needs an extra layer of spins 
which may assume one of the q values and interact with the spins in A. 
However, if we want to keep the previous definition of the surface tensions, 
1Lhe following expansion may be used: 

~I e~(x"')= ~ ( e ~ -  1)lXl I~ (5(xi, a) 
i c e  X c C  i c X  

and the inequality of Theorem 4 is a consequence of Theorem 1 when A 
runs over the subsets of 8A + and B over the subsets of 8A-.  I 

For completeness, we collect in the following theorem some properties 
of the surface tensions that in part have been proved previously. 

Theorem 5. 
d = 2, we have 

For Potts models with q even and large enough and if 

a~,s= 0 for any f l r  fit (3.4) 

a~;f > 0 (3.5) 

a~'b > 0 for fl>--flt (3.6) 

a~ ,b = 0 for fi < fit (3.7) 

Moreover, for d = 3 ,  relations (3.5)-(3.7) also hold and a},z=0 for 
fl < fit [we expect (3.4) to be true for any f l r  fit]. 

Proof. Relations (3.5)-(3.7) have been proved in refs. 11 and 22. The 
proof of relation (3.4) proceeds as follows. For fl < f t ,  the use of inequality 
(3.3) leads to 

a~,s= 0 

On the other hand, since the model is self-dual for d = 2, we have by sym- 
metry 

with fl* defined by 

(e p - 1 )(e ~* - 1 ) = q 
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From this last relation, it is easily seen that if/3 < fit = log(x /q+ 1), we 
have/3*>/3, and therefore 

a},s= 0 for any /3 r fit 

For d = 3, the proofs may be found in refs. 12 and 22. The fact that a},s= 0 
for/3 < fit may be deduced from (3.3) and (3.7). | 

Romark 3. Within the Potts model, surface tensions between 
ordered phases are increasing with respect to the inverse temperature /3. 
This can be seen by first deriving with respect to/3 the partition functions 
appearing in the definition of the surface tensions. The result can then be 
written as the difference of two correlation functions with different boun- 
dary conditions. That this difference has a definite sign is implied by 
inequalities (2.2). 

Combining Theorems 4 and 5, we easily ge t the following proposition. 

Corollary 1. 
enough), we have 

~.,b > o-~s+ ~ ; s>  0 
fit 

at the transition temperature. 

Remark 4. By using the duality symmetry and correlation 
inequalities it has been proved in ref. 22 that for d =  2 the surface tension 
a~ ,b is equal to the inverse correlation length (mass) of the two-point 
correlation function (6(xi,  x j))  at the dual temperature fl*. Then 
inequality (3.8) implies the existence of a mass gap at fit for this model and 
gives an alternative proof of this result already known from ref. 11. 

According to Remark 3 and Corollary 1, we therefore expect for the 
surface tensions the behavior plotted in Fig. 2. 

In the graph of a~ 'b, we have drawn a vertical tangent at fit where a~ ,b 
is discontinuous. Modulo some limit permutations, this corresponds to the 
divergence for the quantity E defined by 

1 
Y~ [ ( 6(x.  xA )~ (/3) - ( 6(x,, xj) )~ (~) l 

E =  SA(n) <i;j)=A 

For d =  2, d =  3 Potts models (with q even and large 

(3.8) 

which may be interpreted as a width for the interface analogous to the 
width studied numerically by others(8): 

1 
w= T E 

i ~ A ; n ~ a ; b  
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a.b 
..:: ...::./'::" 

.:..+... 

! .,...:-Y 
: . ..,:- 
a ' .  . . . . . . .  
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T 

Fig. 2. Surface tensions a ~,b and a~,fas  functions of T=/7  - l .  

The characteristics of this divergence will not be further analyzed in this 
paper. 

The physical interest of Corollary 1 is contained in the beautiful Gibbs 
remark quoted in the introduction. Indeed, this leads us to believe that the 
equality 

a};b = a};s+ ~ ; s  (3.9) 

between surface tensions is satisfied and that there is a sheet of disordered 
phase f separating the two ordered phases a and b at the transition 
temperature. This is perfect wetting. 

One may then wonder if this conclusion is in agreement with the 
Herring relations which describe the perfect wetting: 

cr}'b= a}'/ + ~ 'f (3.t0) 

(o-y') '  = I ( ~ U ) '  - ( @ / ) ' 1  (3.11 ) 

where the prime indicates the derivative with respect to the angle. 
Equation (3.10) should indeed be satisfied at /7, as indicated 

previously. The second condition reduces trivially to 0 = 0 for the Potts 
model whenever the derivatives indeed exist, since (~aa3"b(o) and a}'S(0) are 
even function of 0. When one of the derivatives does not exist at /7, we 
expect that all three derivatives that appear in (3.11) do not exist either; 
this is a consequence of inequality (3.3) and Gibbs' argument, which 
implies the equality [-i.e., formula (3.9) would be valid for any angle 0]. 
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However, in such a case, Herring (14) pointed out that it is enough to satisfy 
(3.11) for one admissible value to get a stable physical situation; by 
admissible value we mean any value between the left and the right 
derivatives. 

We expect the trivial case to occur always for d =  2. However, for d~> 3 
and for q large enough, one should be able to prove that the interface 
between a and f for /~=/3t is rigid by using, for instance, Dobrushin 
method. (23) The rigidity of an interface is indeed believed to imply the non- 
derivability of the corresponding surface tension. This is due to the 
appearance of a facet which is characterized by a cusp in the Wulff plot. 

From this discussion we see that there is no disagreement within the 
Potts model for perfect wetting between the Antonov rule and the Herring 
relations. 

4. T H E  B L U M E - C A P E L  M O D E L  

We consider a system of spins s~ which take the values + 1, 0, - 1. The 
generalized Blume-Capel Hamiltonian is of the form 

HA(S a...SA)=J ~ Is i -s j l~ -#  ~, s~ (4.1) 
( i ; j ) c A  i e A  

where ~ > 1, # >~ 0, and J ~> 0. This Hamiltonian has three ground states at 
# = 0 (the three configurations where all the spins take the same value). At 
low enough temperature and for d ~> 2 the phase diagram of the model is as 
followsf24): there exists a first-order transition line /~,(#) on which three 
phases coexist (obtained as thermodynamic limit of finite-volume Gibbs 
states with the + 1, 0, or - 1  boundary conditions). Above this line two 
phases coexist, obtained respectively with the + 1 and - 1 b.c.; below this 
line there is only one phase obtained with the 0 b.c. 

The inequality 

I-[ 6(s,,+l); 1-I 6(s~,-1))~<O (4.2) 
i ~ A  + i ~ O A -  

holds because the model satisfies F K G  inequalities with respect to the par- 
tial order induced in the configurations by si > s~ for every i, and 6(si, 1) 
[resp. 6(si, - 1 ) ]  is an increasing (resp. a decreasing) function of the con- 
figurations. Therefore, arguing as in the preceding section, it follows that 

a~-'- ~> a~ -'~ + a~ "~ (4.3) 

with obvious notations. Using again the Gibbs argument, we can also give 
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here the same kinds of physical considerations as in Section 3 for the sheet 
of 0 phase which wets perfectly the + and - phases. 

5. CONCLUDING REMARKS 

In this paper, we have proved inequalities between surface tensions by 
using correlation inequalities and in particular 

This inequality together with the Gibbs arguments leads to perfect wetting 
in the Potts and Blume-Capel models at the transition temperature. 

It would certainly be interesting to extend our analysis to a broader 
class of models. Moreover, to get a completely rigorous picture of perfect 
wetting one would need to prove the expected equality relating the surface 
tensions using statistical mechanical arguments. Another interesting effort 
would be to study the thickness of the intermediate layer. 
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